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The bridge function of hard spheres is accurately calculated from computer simulation data
on the pair distribution function via the inverted Ornstein–Zernike equation at reduced den-
sities ρ* ≡ Nσ3/V ranging from 0.2 to 1.02, i.e. from low densities through densities in a vi-
cinity of the phase transition to crystal to densities of metastable fluid region. The data are
used to propose an analytical representation of the bridge function as a function of the
interparticle distance and density. They are further used to construct the so-called Duh–
Haymet plot. It is demonstrated that a “general closure” to the Ornstein–Zernike equation in
the form B(r) = f[γ(r)], where γ is the indirect (or series) correlation function, does not match
the data. Nor does an extended closure B(r) = f[γ(r),ρ*] even in the simplest case of the one
component hard sphere fluid. A relative success of literature closures to the Ornstein–Zernike
equation is discussed.
Keywords: Ornstein–Zernike equation; Closures; Bridge function; Hard spheres.

In molecular theory of fluids the bridge function, B, is defined as an infinite
sum of elementary (or bridge) diagrams, Ei,
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where Ei is a sum of diagrams with two root points and i field points, with-
out articulation (nodal) points and articulation root pairs1. It is related to
the pair distribution function, g(r), by

g r u r r B r( ) exp[ ( ) ( ) ( )]= − + +β γ (2)

Collect. Czech. Chem. Commun. 2011, Vol. 76, No. 1, pp. 51–64

The Bridge Function of Hard Spheres 51

© 2011 Institute of Organic Chemistry and Biochemistry
doi:10.1135/cccc2010127



where β = 1/(kBT) is the reciprocal temperature, u(r) is the pair inter-
molecular potential, zero or infinity in the case of hard spheres, and γ(r) is
the indirect or series correlation function. The three functions, g, B, γ, are
coupled by the Ornstein–Zernike (OZ) integral equation

γ ρ γ( ) [ ( ) ][ ( ) ( )]12 13 1 23 1 23= − − −∫ g g dr3 (3)

where ρ = N/V is the number density and (ij) is an abbreviation for (|ri – rj|)
with |r2 – r1| = r. When a relation between B(r) and γ(r) is known, the pair
distribution function may be calculated by combining Eqs (2) and (3).

There have been proposed a number of relations B = B(γ) called closures
to the OZ equation. For example, the hypernetted chain (HNC) closure is

B(r) = 0, (4)

the Percus–Yevick (PY) closure is

B(r) = ln[ ( ) ] ( )γ γr r+ −1 , (5)

the Martynov–Sarkisov (MS)2 closure is

B(r) = [ ( )] ( ) ,/1 2 11 2+ − −γ γr r (6)

the Rogers–Young (RY)3 closure is

B(r) = ln 1
1+ −








−exp[ ( ) ]
( ),

p r
p

r
γ γ where p = 1 – exp(–0.16r), (7)

and the modified Verlet (VM)4 closure is

B(r) = −
+

1
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where a = 1.1 – ρ*/3, ρ* = Nσ3/V is the reduced density, σ ≡ 1 is the diameter
of hard sphere, N and V are number of particles and system volume, respec-
tively. A number of other closures can be found in literature5, see also ref.6

for review.
Even though the above and other closures are theoretically or semi-

empirically based, they can not give quantitative information on B = B(r) or

Collect. Czech. Chem. Commun. 2011, Vol. 76, No. 1, pp. 51–64

52 Francová, Malijevský, Labík, Kolafa:



B = B(γ) due to their approximative nature. Therefore there are only two
routes of obtaining accurate values of the bridge function as a function of
particle separation and density.

The first route stands in calculation of elementary diagrams, see Eq. (1).
The first elementary diagram, E2, is known analytically7. Values of E3 to E6
were calculated numerically8,9. At low and moderate densities (up to ρ* =
0.5), see Fig. 6 in ref.9, series (1) truncated after E6 agrees well with com-
puter simulation results on B(r) of this work. At densities in the vicinity of
the phase transition to crystal and in the metastable region it differs as
shown in Fig. 1. Attempts to calculate E7 and higher terms in Eq. (1) would
be on the edge or beyond of the present computation technology. There
were attempts to accelerate the rate of convergence of the series by replac-
ing f-bonds by h-bonds, where h = g – 1 is the total correlation function, but
the convergence remained slow10–13.

The second route of obtaining accurate B(r,ρ) is based on computer simu-
lation of the radial distribution function and its inversion to the bridge
function via the OZ equation, Eqs (2) and (3). This route was used by two of
the present authors (A.M. and S.L.)14. They suggested for the bridge func-
tion as a function of interparticle separation distance and density equation
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FIG. 1
The bridge function obtained from computer simulations in comparison with the series of ele-
mentary diagrams, see Eq. (1), truncated after E6 at three high densities, ρ* = 0.8, 0.94 and
1.02. Lines are results of the truncated series, points are the inverted simulation results



B(r) = –b2(r) (9)

where

b(r) =
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and x = r – 1. In the next text, Eqs (9) and (10) are denoted as the ML for-
mula. Free parameters ai as functions of density were fitted to computer
simulation data on g(r) at low and moderate densities (up to ρ* = 0.86)
available (with a reasonable accuracy) in those times.

While the ML formula is reasonably accurate, it has one principal defect:
it postulates that B(r) does not change sign, see Eq. (9). One reason for
introducing this approximation was an attempt to increase numerical
stability of solving a set of highly non-linear equations for unknowns ai
in Eq. (10). Second, the approximation seemed to be reasonable because
(i) the known closures to the OZ equation for hard spheres (with the excep-
tion of the second order PY theory15) predict non-positive values of B(r)
and (ii) the first elementary diagram E2(r) is also non-positive. The postulate
of non-positivity of the bridge function was questioned independently by
Rast et al.11 and by Yuste et al.16. Their findings and the results of the
second order PY theory are inconclusive due to approximations involved.
However, they can be further supported by the fact that the higher elemen-
tary diagrams, E3 to E6, also change sign8,9. Thus, a problem of true depend-
ence of the bridge function on a particle separation was reopened.

A few years ago we reexamined the method of determining the bridge
function by direct inversion of the computer simulation data on the radial
distribution function using the OZ equation17. The improved method con-
sists in simulating the radial distribution as accurately as possible, correct-
ing the results on systematic (finite size, grid size, and tail) errors, and
finally obtaining values of the bridge function from the corrected g(r) simu-
lation data using the OZ equation. The results of the method were demon-
strated for a single density in the vicinity of the phase transition to crystal,
ρ* = 0.94 (ref.17).

Later, we have calculated B(r,ρ*) in the whole range of the fluid densities
and in the metastable fluid densities up to ρ* = 1.02. These results have
been referenced18, but not explicit formulae have been published. The aim
of this paper is to present these data to a broader scientific community and
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to express them analytically as functions of interparticle distance and den-
sity. The second aim of the paper is to use the fitted B(r,ρ*) to testing accu-
racy and reliability of the OZ equation closures.

RESULTS

We have simulated the radial distribution function (RDF) of one-component
hard spheres using both Monte Carlo and molecular dynamics methods in
the range of the reduced density ρ* ∈ [0.2,1.02]. The simulation methodol-
ogy was described earlier17,19. The RDF values corrected to systematic com-
puter simulation errors (finite size, grid, tail) and the data on the bridge
function obtained from them via the OZ equation are deposited as a sup-
plementary material to this paper.

The data on the bridge function have been fitted as a function of inter-
particle separation distance and density. Because there is a discontinuity in
the second derivative of the bridge function at r = 2 (in units of the hard-
sphere diameter) and a higher order discontinuity at r = 3 (see ref.9) we
have decided to separate B = B(r) into three parts. There are also discontinu-
ities of higher orders at r = 1, r = √3 and at distances beyond r = 3 but they
have not been considered. We have proposed the following form

B(r) =

a T r r

b T r r
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where Ti(r) are Chebyshev polynomials of the first kind; ai, bi, ci have been
optimized under the constraints that B(r) and its first derivative are contin-
uous at r = 2, and that also the second derivative is continuous at r = 3. The
values of constants in ai = ai(ρ*), bi = bi(ρ*), ci = ci(ρ*) have been obtained us-
ing both the truncated low density expansion, Eq. (1), and the simulation
data on B(r). The fitting procedure is described in detail in ref.20. The for-
mulae and the values of constants are in the Appendix.

We have tested the fit (11) against the low density expansion data of the
elementary diagrams9 truncated after E6. At ρ* ≤ 0.2, the agreement is per-
fect. The highest deviations between Eq. (11) and the truncated series are of
the order 10–4. We have also tested the accuracy of the fits of B = B(r,ρ*)
against the computer simulation data of this work. The comparison is
shown in Fig. 2 at four selected densities. At the lowest density shown in

Collect. Czech. Chem. Commun. 2011, Vol. 76, No. 1, pp. 51–64

The Bridge Function of Hard Spheres 55



the figure, ρ* = 0.4, the differences between the simulated and the fitted
values are well bellow the estimated computer simulation errors. At a mod-
erate density, ρ* = 0.8, the deviations are less than 0.002, the highest ones
are at r ≈ 2. At a near vicinity of the phase transition from fluid to crystal,
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FIG. 2
Deviations between the fitted and simulated values of the bridge function



ρ* = 0.94, deviations between the simulated values and the fitted values are
not larger than 0.003, the largest ones are again in the vicinity of r = 2.
Finally, the figure shows an extrapolation of the fit to the metastable
region, ρ* = 1.02. At this density the deviations are by an order higher, but
still reasonable. The highest one is in the vicinity of contact (≈0.08), the
second highest (≈0.03) near r = 2.

We may conclude that the fit of the bridge function is in a full agreement
with the available data: (i) elementary diagrams to E6, (ii) inverted com-
puter simulation data on g(r) in the region of densities up to the phase tran-
sition to crystal. In the metastable region the fit gives semi-quantitative
agreement with the simulations.

DISCUSSION

Figure 3 compares the simulated bridge function with the ML equation and
the results of several literature closures at a density in the vicinity of the
phase transition from fluid to crystal. The classical closures, Percus–Yevick
and hypernetted chain, give only qualitative agreement and are not
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FIG. 3
Comparison of the simulated bridge function Bsim with several closures Bclosure at ρ* = 0.94.
Dotted line: this work, Eq. (11); solid line: the MS closure; dashed line: the RY closure; long
dashes: the VM closure; dash-dot-dot line: the ML formula, Eqs (9) and (10)



shown in the figure. More sophisticated closures, the Rogers–Young, the
Martynov–Sarkisov, and the modified Verlet, agree with the data on the
pair distribution function within errors of ≈0.1 in magnitude. Within the
scale of the figure the fit given by Eq. (11) does not differ from the B(r)
data. A similar comparison for the pair distribution function, g(r), is in
Fig. 4.

The same closures as in Figs 3 and 4 are tested in Fig. 5 but for B as a
function of the indirect correlation function γ (so called the Duh–Haymet
plot21) at a high fluid density. In the interval of γ ∈ [0.5,3] all the consid-
ered closures qualitatively agree with the data. From the quantitative point
of view, the PY closure is the worst and the VM one is the best. In the inter-
val of γ ∈ [–0.5,0.5], all the literature closures are incorrect in principle as
they predict monotonous dependence of B = f(γ). In this region, the older
ML equation agrees with a much more accurate Eq. (11) qualitatively but
not quantitatively.

Figures 6 and 7 show B as a function of γ at two high fluid densities and
one metastable density. In Fig. 6, the region of γ ranging from 0.5 to 4 is
shown. In this region, dependence B = f(γ) is monotonous and only weekly
depends on density. Figure 7 depicts a region of γ ∈ [–0.6,0.6]. The picture
is dramatically different. A complicated Φ(B,γ,ρ*) behavior practically ex-
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FIG. 4
Comparison of the simulated pair distribution function gsim with results of the theoretical clo-
sures and the ML formula gclosure at ρ* = 0.94. Notation as in Fig. 3
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FIG. 6
The bridge function versus the indirect correlation function at three selected densities, ρ* =
0.90 (dashed line), 0.94 (full line), and 1.02 (dotted line) for γ greater than 0.5

FIG. 5
Comparison of the bridge function as a function of the indirect correlation function γ with
several closures at ρ* = 0.94. Solid line: this work, Eq. (11); dashed line: the MS closure; dotted
line: the PY closure; long dashes: the VM closure; dash-and-dotted line: the ML formula, Eqs
(9) and (10)



cludes any analytical description. Similar non local behavior was also found
for additive and nonadditive hard sphere binary mixtures by Fatoni and
Pastore22.

There is an alternative to the integral equation approach, the fundamen-
tal measure theory of Rosenfeld23, where the bridge function is not a func-
tion but a functional of the indirect correlation function. However, results
for homogeneous fluids do not reach the accuracy of the integral equation
methods up to now.

It may be concluded that the bridge function does not depend on the in-
direct function at a given density only locally. Then, why the literature clo-
sures are (at least partly) successful in describing the fluid structure? The
answer is demonstrated in Fig. 6. In the most important region of high (in
magnitude) values of B, the bridge function is a simple function of γ almost
independent on density. In addition, while calculating the bridge function
from the pair distribution function requires an extreme accurate the pair
distribution function17 (the error in g gets multiplied by 1000 at high fluid
densities), the opposite is true for determining g from B; an inaccurate B
may give an accurate g.
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FIG. 7
The bridge function versus the indirect correlation function at three selected densities, ρ* =
0.90 (dashed line), 0.94 (full line), and 1.02 (dotted line) for γ smaller than 0.6



CONCLUSIONS

New highly accurate computer simulation data on the pair distribution
function of hard spheres at densities ρ* ∈ [0.2,1.2] have been used to calcu-
late the bridge function via the (inverted) OZ equation. The procedure of
the invertion is described in detail in ref.17.

The results for the bridge function have been fitted to the function of the
interparticle separation distance and density. They fitted B(r,ρ) has been
used to test directly a few of the most frequently used closures to the OZ
equation. It has been shown that none of the considered closures agrees
with the present simulation results. More generally, it has been shown that
none of the closures based on a local dependence of the bridge function on
the indirect correlation function (and density) is able to describe quantita-
tively the real (i.e. simulated) dependence of the bridge function on a parti-
cle separation and density for pure hard spheres and therefore also for more
complex fluid systems. A reasonable success of literature closures has been
explained.

The fit B = B(r,ρ*) can be used in the frame of the reference hypernetted
chain (RHNC)24 theory with hard spheres as a reference system. However,
the simpler ML equation remains useful for this purpose.
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APPENDIX

Density dependences of constants in Eq. (11) have been found by a method
of trials and errors (see ref.20 for details) for densities ρ* ranging from 0.2
to 0.94. The results are as follows (for simplifying notation ρ is used instead
of ρ*).

Interval r ∈ [1,2]

a A
i j i

j

m
j

iρ

ρ

π ρ
2

0

5

1
6

=
−





=
∑ , , for i = 0 to 4, and 7 (12)

and
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A A A A Ai

i i i i iρ
ρ ρ ρ ρ
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4
12= + + + +, , , , , , for i = 5, 6, and 8 to 13. (13)

Interval r ∈ [2,3]

b B B B Bi i i i i= + + +0
4

1
6

2
8

3
12

, , , ,ρ ρ ρ ρ . (14)

Constants of the tail, r > 3

c0 = –1.031815ρ6 + 5.266226ρ12 ,
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c1 =
0 2893272 0 4913634

0 5235988 1

8 16

4

. .

( . )

ρ ρ
ρ

−
−

,

c2 = –1.921914ρ6 – 2.921559ρ12 . (15)

Values of the constants are given in Tables I, II and III. Computer codes
on B = B(r,ρ*) are available from the first author on request.
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TABLE I
Coefficients in Eq. (12)

ai A0,i A1,i A2,i A3,i A4,i A5,i mi

a0 –0.206760 0.369280 0.171548 –0.196882 0.321639 –0.136672 4

a1 0.321211 –0.364392 0.132817 –0.024998 3

a2 –0.140573 –0.093559 0.211178 –0.086265 2

a3 0.027062 0.055775 0.112436 –0.125269 2

a4 0.001820 –0.002785 0.025128 –0.149103 1

a5 –3.323 10–6 0.000182 –0.001748 0.003525 3

TABLE II
Coefficients in Eq. (13)

ai A0,i A1,i A2,i A3,i A4,i

a5 –0.000911 –0.010723 –0.107885 0.150046

a6 –0.022374 0.069655 –0.015902

a8 9.63 10–6 –0.002118 0.011769 –0.003936

a9 8.04 10–6 –0.000696 0.005670 –0.009351

a10 –1.36 10–5 0.000424 –0.000169 0.004596

a11 0.002958 –0.009630 0.006282

a12 0.000998 –0.000792 0.001137

a13 –0.000974 0.005932 –0.005110



Collect. Czech. Chem. Commun. 2011, Vol. 76, No. 1, pp. 51–64

64 Francová, Malijevský, Labík, Kolafa:

TABLE III
Coefficients in Eq. (14)

bi B0,i B1,i B2,i B3,i

b0 0.006446 –0.032025 –0.010458

b1 –0.018374 0.06595 –0.004365

b2 0.014518 –0.053402 0.054504

b3 –0.013088 0.033156 –0.002187

b4 0.010724 –0.014752 –0.033415

b5 –0.010482 0.002207 0.033602

b6 –0.008424 0.079268 –0.100056

b7 –0.002674 0.023253 –0.032579

b8 0.002688 –0.011618 0.010049

b9 –0.001499 0.004614 –0.002606


